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Short-time aging in binary glasses
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Roma 00187, Italy

Received 14 July 1997

Abstract. We present some simple computer simulations that indicate that short-time aging
is realized in a simple model of binary glasses. It is interesting to note that modest computer
simulations are enough to prove this effect. We also find indications of a dynamically growing
correlation length.

1. Introduction

Aging was discovered a long time ago and it has been experimentally studied in great detail
in some materials [1]. Later it was realized that it is a quite common phenomenon in physics.
It is only recently [2–4] that this has been the subject of wide theoretical investigations.
Basically, aging predicts that the response of the system to a force that has been applied for
a timet depends ont (also for very large times) whent is comparable with the waiting time
tw, i.e. the time the systems remained in the final conditions before starting the experiment.

Aging has been studied analytically in generalized spin glasses: in the simplest form
it predicts that the correlation functions among a configuration at timetw and at time
tw + t depend only on the ratiot/tw in the limit of large times [3]. This form of aging
is approximately found to be correct in spin glasses, both in experiments and numerical
simulations [5–7] (although some small modification may be needed). Slightly different
forms of aging have been proposed, for example the scaling variable could bet/tuw with µ
near but not equal to 1. Here we stick to thet/tw scaling and refer to it assimple aging.

The aim of this letter is to start a systematic study of aging using numerical simulations
in glasses. We will show that the aging regime starts at relatively short times and some
of its properties can be investigated with a modest amount of computer time. We limit
ourselves to the analysis in the initial-time region, leaving the study of the behaviour at
larger times and in bigger systems to future, more systematic investigations.

The numerical experiment that we present here is rather simple: we run a numerical
simulation where the system starts from a fully random configuration (i.e. at infinite
temperature). The system is then carried (at time zero) at temperatureT . We take a
photograph of the system at timetw and compare the latter evolution of the system with
this reference configuration.

The main quantity on which we concentrate our attention is the two-times correlation
function

g(r, tw, t) =
∑
i,k=N

〈δ(|xi(tw)− xk(tw + t)| − r)〉
N

(1)
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whereN is the total number of particles andxi(t) denotes the position of the particlei at
time t . In the limit of large times,g(r, t, t) goes to the usual correlation function for liquids
(apart from an extra delta function at the origin, which is absent in the usual definition
where the sum is restricted toi 6= k).

For this function simple aging predicts that forboth t and largetw, we have the scaling
relation

g(r, tw, t) ≈ G(r, s) wheres ≡ t

tw
. (2)

We have tested this relation for binary fluids. The model we consider is the following.
We have taken a mixture of soft particles of different sizes. Half of the particles are of type
A, half of typeB and the interaction among the particle is given by

∑
i<k

(
(σ (i)+ σ(k)
|xi − xk|

)12

(3)

where the radius(σ ) depends on the type of particles. This model has been carefully studied
in the past [8–10]. It is known that a choice of the radius such thatσB/σA = 1.2 strongly
inhibits crystallization and the system goes into a glassy phase when it is cooled. Using the
same conventions of the previous investigators we consider particles of average diameter 1,
more precisely we set

σ 3
A + 2(σA + σB)3+ σ 3

B

4
= 1. (4)

Due to the simple scaling behaviour of the potential, the thermodynamic quantities
depend only on the quantityT 4/ρ, T and ρ being respectively the temperature and the
density. For definiteness we have takenρ = 1. The model has been widely studied,
especially for this choice of parameters. It is usual to introduce the quantity0 ≡ β4. The
glass transition is known to occur around0 = 1.45 [9].

Our simulations are performed using a Monte Carlo algorithm, which is more easy to
determine than molecular dynamics, if we change the temperature in an abrupt way. Each
particle is shifted by a random amount at each step, and the size of the shift is fixed by
the condition that the average acceptance rate of the proposal change is about 0.5. Particles
are placed in a cubic box with periodic boundary conditions and at the end of each Monte
Carlo sweep all the particles are shifted by the same vector in order to keep the centre of
mass fixed [11]. This last step is introduced in order to avoid the centre of mass drifting
and it would not be necessary in molecular dynamics if we start from a configuration at
zero total momentum.

In our simulations we have considered a relatively small number of particles,N = 34,
N = 66 andN = 258 (most of the data we show are forN = 258). We start by randomly
placing the particles and we quench the system by putting it at0 = 1.8, i.e. at a temperature
well below the glass transition. The energy, as a function of the Monte Carlo time (t is
the number of Monte Carlo sweeps), is shown in figure 1. The data are averaged over 25
different realizations of the dynamics with different initial conditions. The energy seems to
decay to an asymptotic value with some corrections which vanish as a power of time.

We have measured the correlation functionG for different choices oftw (i.e. tw = 32,
128, 512, 2048, 8192) ats ≡ t/tw equal to 3. If we exclude the points attw = 32
(which we have not plotted), the data for the correlation functions have a very similar shape
independently oftw at fixeds, as expected from simple aging. In order to check the aging
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Figure 1. The energy density for 258 particles as a function of time. The fit isE = E∞+At−λ
with E∞ = 1.92,A = 12 andλ = 0.7.

Figure 2. The correlation functionG(r, tw, t) as function forr for N = 258 for different values
of tw(tw = 128, 512, 2048, 8192, att/tw equal to 3. The data have been averaged over 25
different initial conditions.

in a more quantitative way and to prove possible violations of aging, we have introduced
the quantityq(tw, t) defined as

q(tw, t) =
∫

dx g(x, tw, t)f (x) ≡
∑

i,k=1,N

f (xi(t + tw)− xk(tw))
N2

(5)

where we have chosen the functionf in such a way that it is sensitive to the area of the
central peak, i.e.

f (x) = a12

x12+ a12
(6)

with a = 0.3. The functionf is very small whenx � 0.3 and near to 1 forx < 0.3. The
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Figure 3. The overlapq as function ofs for tw = 128, 512, 2048, 8192 andN = 258, averaged
over 25 initial conditions.

value ofq is a number very near to 1 for similar configurations (in which the particles have
moved less thana) and it is a much smaller value (less than 0.l) for unrelated configurations;
using the same terminology as in spin glasses [12–14]q can be called the overlap of the
two configurations.

In figure 3 we plot the overlap as a function ofs at different waiting times. We note
that for s near to zero there is a noticeable dependence on the waiting time, which can be
related to the fact thatt is not large. There is a small upward drift of the data at larges.
In order to illustrate the proof of the effect, in figure 4 we plot the functionq at s = 4 as
a function of tw. In this pattern of violations of simple aging, a downward drift at small
s and an upward drift at larges is quite a common phenomenon. Here it is not clear
whether these violations are the effects of transient pre-asymptotic terms or the effect of
small violations of the simple aging hypothesis in the asymptotic limit. This point should
be carefully investigated in the future and its clarification goes beyond the aim of this letter.

It would be interesting to study which is the most relevant scale of distances in the
aging process. A possible indirect approach to this question is the following. The data on
smaller systems indicates that there are strong volume effects at large times [15]. In order
to find the physical origin of this effect it is instructive to look to the time dependence of
the fluctuations ofq from sample to sample, i.e. to

1(tw, t) ≡ 〈(q(tw, t)− 〈q(tw, t)〉)2〉 (7)

where the average is found over different realization of the initial conditions.
In figure 5 we show the data (ats = 4) for

M(tw) ≡ N1(tw, 4tw) (8)

versust1/2w . The quantityM(tw) seems to increase as a power of time with the exponent
µ near 1

2 and shows a weak dependence on the size (as expected, usually fluctuations are
proportional toN−1/2).

In order to interpret these results it is convenient to recall the physical picture at the
base of simple aging: the system evolves by a sequence of quasi-equilibrium states and
remains in a given state for a time proportional to the time needed to arrive at it. In the
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Figure 4. The value of the overlapq at s = 4 as a function oftw for N = 66 andN = 258.

Figure 5. The value ofM(tw) as a function oft1/2w at s = 4.

most extreme picture we have a punctuated equilibrium of a long period of stasis intermixed
by fast, thermally activated, tunnelling events. Increasing the value oftw, the barrier that
we have to cross becomes higher and higher, such that collective movements involve a large
number of particles. Roughly speaking, we expect that the variance ofq (i.e.1) is inversely
proportional to the number(N (tw)) of regions which have been moved independently i.e.

1(tw) ∝ N (tw)−1 = N−1(N (tw)/N)−1. (9)

The quantityN (tw/N) may be interpreted as the volume of the regions that move together
in a simultaneous way. The previous result implies that the time variation ofq is dominated
by events which involve the rearrangements of regions of a size which increases at least as
tµ/3(µ/3 ≈ 1

6). This type of behaviour (i.e. a dynamical correlation length increasing as a
power of time) has been seen in quenched-disordered systems such as spin glasses [16, 17].

These considerations imply a change in the behaviour of the system when the number
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of particles involved in a typical rearrangement becomes of the same order as the sample
size. It is evident that when the variance ofq(1) becomes comparable with(1− q)2 the
distribution of q can no longer be Gaussian (the overlap cannot become greater than 1!)
and we enter into a new regime. Strong finite-size effects are thus expected for sufficiently
large times, i.e. for times which increase asN1/µ. It is also quite likely that for sufficiently
large times a finite system reaches a low-energy state such that further jumps are inhibited
or occur on a much larger timescale [18].

Therefore the conclusions of this letter are as follows.
• Aging effects can also be observed at relatively short times in binary glasses.
• Simple aging is observed for a variation of about two orders of magnitude in the

waiting time with deviations which are at most 10%.
• It is suggested that there is a dynamical correlation length, that indicate the size of the

regions which are collective rearranged, which diverges as a power of time. (A direct study
of the size of the rearranged regions in the equilibrium dynamics can be found in [1].)

Further numerical simulations are needed to decide whether the small violations of
simple scaling are finite-volume effects or they survive in larger samples. It would also be
interesting to study the temperature dependence of the effect and compare the results with
detailed theoretical predictions.

I thank G Ciccotti and D Lancaster for useful discussions.
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